

Using ActiveX Instrument Driver Objects

Dec 2000 2nd Edition

Original Japanese Issue by : Hiroshi Yamaguchi (Software Engineering Group)

English Edition Translation by: Makoto Kondo (Software Engineering Group)

KIKUSUI ELECTRONICS CORP.

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELE

Getting Started

1. SOFTWARE LICENSE AGREEMENT

Each item of the following license agreement is exactly the same as shown in the Kikusui
web's download page. You must have agreed the license agreement if you are reading this
guidebook downloaded at the site. If you decline the agreement, please delete this
guidebook.

2. SU

Pleas
ques
Dept
deco

3. W

Dow
1. Grant of License

KIKUSUI Electronics Corp. hereinafter referred to as ("KIKUSUI") grants to you the following
rights concerning this software, which can be downloaded on the condition that you agree to
the terms of this Agreement and related written materials (collectively referred to as "the
SOFTWARE"):

(a) To use of the SOFTWARE for the purpose of using our products that correspond to the
SOFTWARE

(b) To make copies of the SOFTWARE for use on one or more computers

2. Additional License

Files of various types that are created as a result of using the SOFTWARE in accordance with
the specified purposes are considered as your copyrighted works.

3. Copyright

The SOFTWARE and its copies are owned by KIKUSUI or any party authorized by KIKUSUI,
and are protected by Japanese Copyright Act and international treaty provisions. Any copies
that you are permitted to make pursuant to this Agreement must contain the same copyright
and other proprietary notices that are affixed to the downloaded SOFTWARE.

4. Restrictions

(a) When the SOFTWARE is supplied with source code, you shall not distribute the
SOFTWARE which you modified to a third party.

(b) When the SOFTWARE is supplied with binary (compiled) object, you shall not reverse-
engineer the SOFTWARE.

5. Limited Warranty

KIKUSUI does not guarantee that the SOFTWARE is suitable for a particular purpose, or that
the SOFTWARE is free of defects, or any other matters relating to the SOFTWARE.

6. Exclusion of Liability

Under no circumstances shall KIKUSUI be liable for any damages whatsoever (including, but
not limited to, damages for loss of business profits, business interruption, loss of business
information, or other pecuniary loss) arising out of the use of or inability to use the
SOFTWARE.

7. Termination

KIKUSUI reserves the right to terminate this Agreement if you fail to satisfy any of its terms
and conditions, in which case you will not be permitted to use this SOFTWARE.

PPORT
CTRONICS CORP. Page 2/29

e be noted that this Server do not provide the User support. In case you have any
tion regarding to these software, please contact at our Service
.(service@kikusui.co.jp). And please be sure to read the document file after
mpressing the file.

ARRANTY

nloading and Installation of the driver shall be executed under the user’s responsibility.

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 3/29

The contents of driver may be subject to change or to be modified for the improvement
without notice.

4. COPYRIGHT HOLDER

The copyright of each driver belong to Kikusui Electronics Corp

5. ABOUT THIS GUIDEBOOK

This document will guide you through how to start using Visual Basic (ActiveX) instrument
drivers downloaded at the Kikusui web download site with sample codes. It is recommended
to read if you are in maze having no ideas after having drivers downloaded. This is a quick
start guide.

The guidebook describes some example codes for use with Visual Basic 6.0, Excel 97, Visual
C++ 6.0, and Delphi 5.0 in separate chapters. So you only need to read the chapter that
matches with your development tool. Therefore you might feel there are some duplicate
explanations if you strictly read every chapter.

Hereafter this guidebook calls Visual Basic (ActiveX) drivers simply "Instrument Drivers.”

6. TRADEMARKS

Borland and Delphi are trademarks or registered trademarks of Inprise Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Microsoft, Windows, Visual Basic, Visual C++, ActiveX are trademarks or registered
trademarks of Microsoft Corporation in the U.S. or other countries.

National Instruments, NI-488.2, NI-VISA are trademarks or registered trademarks of National
Instruments Corporation.

Other vendor names and product names are trademarks or registered trademarks of
corresponding vendor.

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 4/29

Contents

CHAPTER 1- OVERVIEW .. 5
1-1 WHAT IS INSTRUMENT DRIVER 5
1-2 TOOLS 5
1-3 OPERATIONAL ENVIRONMENT 5

CHAPTER 2- SETUP.. 6
2-1 INTERFACE CARDS 6
2-2 GPIB BOARD 6
2-3 CONNECTING INTERFACE CABLE 6
2-4 INSTALLING INSTRUMENT DRIVER 6
2-5 TOOLS 6

CHAPTER 3- VISUAL BASIC 6.0 ... 7
3-1 ADDING A COMPONENT 7
3-2 PUTTING CONTROL ONTO VB FORM 7
3-3 THE FIRST CODE - CONNECT 8
3-4 NEED A HELP? 8
3-5 PROPERTY PAGES 9
3-6 EVENT HANDLING 9
3-7 EXAMPLE CODES 10
3-8 SETSTRING AND GETSTRING METHODS 11

CHAPTER 4- EXCEL 97 ... 12
4-1 ADDING USER FORM AND CONTROL 12
4-2 PUTTING CONTROL 12
4-3 THE FIRST CODE - CONNECT 13
4-4 NEED A HELP? 14
4-5 PROPERTY PAGES 14
4-6 EVENT HANDLING 14
4-7 EXAMPLE CODES 15
4-8 SETSTRING AND GETSTRING METHODS 17

CHAPTER 5- VISUAL C++ 6.0 (DIALOGUE-BASED APP) ... 18
5-1 CREATING A PROJECT 18
5-2 ADDING COMPONENT 19
5-3 LOCATING CONTROLS 19
5-4 THE FIRST CODE – CONNECT 21
5-5 EVENT HANDLING 21
5-6 EXAMPLE CODE 22
5-7 BUILD AND RUN 22
5-8 NEED A HELP? 22

CHAPTER 6- VISUAL C++ 6.0 (WITH EARLY BINDING) ... 23
6-1 CREATING PROJECT 23
6-2 IMPORTING TYPE LIBRARY 23
6-3 ADDING MENU 24
6-4 ADDING DATA MEMBERS 24
6-5 CONSTRUCTOR 25
6-6 HANDLER FOR CONNECT MENU 25
6-7 BUILD AND RUN 25

CHAPTER 7- DELPHI 5.0 .. 26
7-1 IMPORTING CONTROL 26
7-2 PUTTING CONTROL ONTO FORM 27
7-3 THE FIRST CODE – CONNECT 27
7-4 EXCEPTION HANDLING WITH TRY/EXCEPT 27
7-5 EVENT HANDLING 28
7-6 EXAMPLE CODE 28

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 5/29

Chapter 1- Overview

1-1 What Is Instrument Driver
Instrument drivers that can be downloaded at Kikusui web site are convenient development
kits for writing application programs that control Kikusui products through GPIB or RS-232C.

If you write a GPIB-control app software in Visual Basic without instrument drivers, you will
need link National Instruments gpib-32.dll looking up NI-GPIB API and command table of the
Kikusui product. But using an instrument driver will allow you to put the control to your VB
form as like as standard buttons or listboxes, and you can write easy-to-read codes rapidly.

The instrument drivers are built based on the COM (Component Object Model) technology.
Therefore you can use them with various kinds of the language tools such as Visual Basic,
Microsoft Office, and Delphi, which are all compatible with ActiveX feature.

1-2 Tools
This guidebook will show you concrete examples using Visual Basic 6.0, Excel 97, Visual C++
6.0, and Delphi 5.0.

If you use other tools:

Any 32bit tools that support ActiveX (such as Visual Basic 4.0 / 5.0, C++ Builder, etc…) can also be
used.

1-3 Operational Environment
You need VISA (Virtual Instrument Software Architecture) library ver2.0 or later for both
GPIB and RS-232C operations, since the instrument drivers use VISA library. We did
confirmation with NI-VISA but not with HP-VISA or other versions. VISA library may be
included with your GPIB/HP-IB board or with LabVIEW CD-ROM. Otherwise you can
download the NI-VISA2.0 at the following web site:

http://www.ni.com/visa/

GPIB users:
♦ Personal computer running Windows 9x/NT4/2000
♦ National Instruments NI-488.2M-compatible board, or Agilent Technologies HP-IB board
♦ GPIB cable

RS-232C users:
♦ Personal computer running Windows 9x/NT4/2000
♦ RS-232C Null-Modem (cross) cable

The following instrument driver versions are not compatible with VISA library. Please download the
latest ones.

PCR-L/W series Ver 2.70 or earlier
PLZ-3W/3WH series Ver 1.00 or earlier
PIA3200 Ver 1.10 or earlier
TOS9000 Ver 1.01 or earlier
KJM6755(A) Ver 1.00 or earlier

You need a different way when you import PCR-L/W series instrument driver Ver2.70 to your
development tools. That driver comes with a guidebook detailer than this book. Please refer it.

PCR-L/W series driver Ver2.70 works only with National Instruments NI-488.2M-compatible boards.

http://www.ni.com/visa/

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 6/29

Chapter 2- Setup

2-1 Interface Cards
If your instrument does not have GPIB or RS-232C interface as a standard equipment, you
need install optional interface card to your instrument. Refer to the instruction manual about
applicable option cards. After attaching the interface card, configure GPIB address or RS232
communication parameters. Mind that some RS-232C instruments require different
communication parameters or cables.

2-2 GPIB Board
If you use GPIB, you need attach an NI-488.2M or compatible board (National Instruments)
or an HP-IB board (Agilent Technologies) to your PC. Your PC also requires VISA library.

2-3 Connecting Interface Cable
When the interface cards on both instrument and PC are ready, connect an IEEE488 or RS-
232C cable between them.

2-4 Installing Instrument Driver
The downloaded instrument driver (xxx.EXE) is a self-extract archive that works as a SETUP
program. Run the program by typing the executable name or execute it from Explorer. As
the dialogue box shown in Figure 2-1 appears, click the Setup button. After that you only
need to follow the on-screen instruction.

Figure 2-1 Self-extracting SETUP program

After the screen shows "Setup Complete !" message, click the Close button to finish the
installation. The SETUP program copies necessary files to C:\Program Files\Common
Files\Kikusui Shared folder and registers the driver to the registry database.

2-5 Tools
The guidebook assumes that you already installed your development tool such as Visual
Basic 6.0 or Excel 97. The structure of this guidebook only requires you need to read
necessary chapters concerning to your tool.

Chapter 3 Visual Basic 6.0

Chapter 4 Excel 97

Chapter 5 Visual C++ 6.0 (MFC Dialogue-based app, Late Binding)

Chapter 6 Visual C++ 6.0 (Early Binding)

Chapter 7 Delphi 5.0

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 7/29

Chapter 3- Visual Basic 6.0

3-1 Adding A Component
Launch Visual Basic 6.0 and then select Standard EXE on the New Project dialogue.
Choose Project | Components menu to open the Components dialogue shown in Figure
3-1. After installing the instrument driver, Kikusui xxxx Driver Vx.x must been seen in
the component list. Now check the driver module you want to use. After closing the dialog
with the OK button, the Toolbox window will show the driver component on it (Figure 3-2).

Figure 3-1 Visual Basic 6.0 Components dialogue

3-2 Putting Control Onto VB Form
Put Tos9000 and CommandButton controls from the Toolbox onto your VB form.
Although the given default name Tos90001 is nice, now rename it to simply tos on the
Properties window.

Note:

Although the guidebook examples TOS9000 instrument driver here, it will be easy to replace with other
instrument drivers.

Figure 3-2 Visual Basic 6.0 Toolbox and Form

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 8/29

3-3 The First Code - Connect
Double-click the Command1 button and you can write event handling code there. Type tos.
and then you will see object members of Tos9000 object with a help of Auto List Member
feature on Visual Basic (Figure 3-3). Highlight the Connect method and then press CTRL +
ENTER. The word Connect will be automatically entered.

Note:

With Tools| Options menu and then Editor tab on the Visual Basic, you can enable/disable the Auto
List Members feature.

Furthermore press the SPACEBAR then a guide Connect (DevName As String) will pop up.
As the VB guides, type a device name "GPIB::1" as string type. The DevName "GPIB::1"
means GPIB address 1. If using an RS-232C port, type "ASRL1".

Private Sub Command1_Click()
tos.Connect "GPIB::1"

End Sub

The Connect method actually connects the instrument as you think. You have to call this
method first on your program codes. When the above one-line program is executed by
clicking the Command1 button, your TOS9000 must go to REMOTE state. In contrast the
disconnection method is Disconnect.

Figure 3-3 Auto List Members feature

It is also one of good ways that you Connect the instrument at form's Load operation and
Disconnect at the Unload operation. Additionally, it will be also good to replace the button
caption with Connect or Disconnect.

Private Sub Form_Load()
tos.Connect "GPIB::1"

End Sub

Private Sub Form_Unload(Cancel As Integer)
tos.Disconnect

End Sub

If you succeeded until Connect operation, you will have understood basic concept. You can
write your own application by referencing the online help.

3-4 Need A Help?
To look up the online help of instrument drivers, chose View | Object Browser menu to
show the Object Browser, then select "TOS9000LibCtl" from the Project/Library

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 9/29

combobox. Highlight a member of the Tos9000 object and then click the Help button. Now
you will see the online help for the TOS9000 Driver.

Figure 3-4 Referencing Help on Object Browser

3-5 Property Pages
Since the TOS9000 instrument driver has property pages for design-time setting, your
program can easily control the instrument only with the Start and Stop actions. The Auto
Monitor tab page is for setting event handling properties.

Figure 3-5 Property Pages for TOS9000 Driver

3-6 Event Handling
Double-click the TOS9000 icon on the form, or select tos on the Object combobox and
TestingW on the Procedure combobox (Figure 3-6). Then a sub procedure in which you
can write event-handling code for W-test will be generated.

Private Sub tos_TestingW(ByVal Status As Integer, ByVal Voltage As Double, ByVal Current As Double)

End Sub

Figure 3-6 Object and procedure combo-boxes on Visual Basic

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 10/29

To enable the event the AutoMonitorEnabled property must be set to True. Also set
AutoMonitorInterval to an appropriate value [ms]. We recommend 500ms. The example
code shown in the section 3-7 performs a W-test and updates the monitored voltage and
current display on the label control at every 500ms.

3-7 Example Codes
This example program sets Test Mode and Test Voltage with the Setting button, starts with
the Start button, and stops with the Stop button. It connects the instrument when the
Form is being loaded and disconnects when unloaded. If the connection is failed, then an
error message will appear. Clicking the Monitor button also retrieves test voltage with the
MonVoltage property and displays it on the label control. Although this example is similar
to the "event-handling" example, the Monitor button is valid even if the test is stopped.

Private Sub Form_Load() ' [Form's loading process]
On Error GoTo GPIB_EXP ' declares exception handler (GPIB_EXP)
tos.Connect "GPIB::1" ' connects instrument
Exit Sub

GPIB_EXP: ' [Exception handler]
MsgBox Err.Description ' shows error message
tos.Disconnect
End ' halts the app

End Sub

Private Sub Form_Unload(Cancel As Integer) ' [Form's unload process]
tos.Disconnect ' disconnects instrument

End Sub

Private Sub Monitor_Click() ' [MONITOR button handler]
Label1.Caption = Format(tos.MonVoltage, "0.00kV")

' shows monitored voltage on Label1
End Sub

Private Sub Setting_Click() ' [SETTING button handler]
tos.TestMode = tosMode_W ' W-test mode
tos.ScanningUnits = 0 ' no scanning unit
tos.Voltage = 5 ' test voltage 5kV
tos.LimitLower = 0 ' lower limit 0mA
tos.LimitUpper = 40 ' upper limit 40mA
tos.ExecTime = 10 ' test time 10sec

End Sub
Private Sub Start_Click() ' [START button handler]

tos.Start ' starts test
End Sub

Private Sub Stop_Click() ' [STOP button handler]
tos.Stop ' stops the test

End Sub

' [event handler for W-test]
Private Sub tos_TestingW(ByVal Status As Integer, ByVal Voltage As Double,
ByVal Current As Double)

Dim szVoltage As String
Dim szCurrent As String

If Status = 2 Then
szVoltage = Format(Voltage, "0.00kV") ' formats volt value
szCurrent = Format(Current, "0.00mA") ' formats ampere value

' shows volt & ampere on Label2 as a two-row display
Label2.Caption = szVoltage + Chr(&HD) + Chr(&HA) + szCurrent

End If
End Sub

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 11/29

Figure 3-7 Running Example Program

3-8 SetString And GetString Methods
The SetString method allows you to send a command as is. This is just like ibwrt/ibrd or
PRINT@1;/INPUT@1; statements.

Private Sub Monitor_Click()
tos.SetString "VDATA?"
Label1.Caption = tos.GetString

End Sub

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 12/29

Chapter 4- Excel 97

4-1 Adding User Form and Control
Launch Excel 97, and then activate the Visual Basic toolbar by selecting View | Toolbars |
Visual Basic menu. It is also good to embed the toolbar into the menu bar. On the Visual
Basic toolbar, click the button that shows Visual Basic Editor tooltip. Now you will see a
window captioned "Microsoft Visual Basic – Book1." (Hereafter we call it Excel VBA or simply
VBA.) Then chose Insert | UserForm menu on the VBA to add a new form.

Choose Tools | Additional Controls menu, then the Additional Control dialogue appears as
shown in Figure 4-1. If an instrument driver is installed, the list must have a Kikusui xxxx
Driver. If you can find a target instrument on the list, check it and then click the OK button
to close the dialogue. Now you will see a driver component on the Toolbox. (Figure 4-2)

Figure 4-1 Additional Controls dialogue in Excel VBA

4-2 Putting Control
This example assumes that you put a button onto the form and add program codes, though
it is also possible to put a button onto an Excel worksheet.

Figure 4-2 Excel VBA Toolbox and User Form

As shown in the Figure 4-2, put CommandButton and Tos9000 objects on the UserForm
from the Toolbox. Now change the default object name Tos90001 to simply tos, though the
default name is not too bad.

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 13/29

Note:

Although the guidebook examples TOS9000 instrument driver here, it will be easy to replace with other
instrument drivers.

4-3 The First Code - Connect
Double-click the CommandButton1 button and you can write event handling code there.
Type tos. and then you will see object members of Tos9000 object with a help of Auto List
Members feature of Visual Basic (Figure 4-3). Highlight the Connect method and then press
CTRL + ENTER. The word Connect will be automatically entered.

Note:

With Tools| Options menu and then Editor tab on the Visual Basic, you can enable/disable the Auto
List Members feature.

Furthermore press the SPACEBAR then a guide Connect (DevName As String) will appear.
As the VB guides, type a device name "GPIB::1" as string type. The DevName "GPIB::1"
means GPIB address 1. If using an RS-232C port, type "ASRL1".

Private Sub CommandButton1_Click()
tos.Connect "GPIB::1"

End Sub

The Connect method actually connects the instrument as you think. You have to call this
method first on your program codes. When the above one-line program is executed by
clicking the CommandButton1 button, your TOS9000 must goes to REMOTE state. In
contrast the disconnection method is Disconnect.

Figure 4-3 Auto List Members

Therefore, it is one of good ways that you Connect the instrument at form's Load operation
and Disconnect at the Unload operation. Additionally, it will be also good to replace the
button caption with Connect or Disconnect.

Private Sub UserForm_Initialize()
tos.Connect "GPIB::1"

End Sub

Private Sub UserForm_Terminate()
tos.Disconnect

End Sub

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 14/29

If you succeeded until Connect operation, you will have understood basic concept. You can
write your own application by referencing the online help.

4-4 Need A Help?
To look up the online help of instrument drivers, chose View | Object Browser menu to
show the Object Browser, then select "TOS9000Lib" from the Project/Library combobox.
Highlight a member of the Tos9000 object and then click the Help button. Now you will see
the online help for the TOS9000 Driver.

Figure 4-4 Referencing on-line help with Object Browser

4-5 Property Pages
 Since the TOS9000 instrument driver has property pages for design-time setting, your
program can easily control the instrument only with the Start and Stop actions. The Auto
Monitor tab page is for setting event handling properties.

Figure 4-5 Property Pages for TOS9000 Driver

4-6 Event Handling
Double-click the TOS9000 icon on the form, or select tos on the Object combobox and
TestingW on the Procedure combobox (Figure 4-6). Then a sub procedure in which you
can write the event-handling for W-test will be generated.

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 15/29

Private Sub tos_TestingW(ByVal Status As Integer, ByVal Voltage As Double, ByVal Current As Double)

End Sub

Figure 4-6 Object and procedure combo-boxes on VBA

To enable the event the AutoMonitorEnabled property must be set to True. Also set
AutoMonitorInterval to an appropriate value [ms]. We recommend 500ms. The example
code shown in the section 4-7 performs a W-test and updates the on-test voltage and
current display on the label control at every 500ms.

4-7 Example Codes
To have an Excel-specific feature, you write here an example that sets up test conditions
looking up the worksheet. The example locates option-buttons that can select each of A/B/C
columns on the worksheet which describe test conditions. Clicking the Start button will start
a test with given test conditions. Leakage current and measured resistance will be shown on
the Label during withstanding and insulation test respectively.

Figure 4-7 Excel worksheet

Figure 4-8 Designing UserForm

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 16/29

Private Sub CommandButtonStart_Click() ' [START button handler]
Dim szTestPat As String
Dim szCmd As String
Dim nSts As Integer

If OptionButton1.Value = True Then
szTestPat = "A" ' tests with A condition

ElseIf OptionButton2.Value = True Then
szTestPat = "B" ' tests with B condition

Else
szTestPat = "C" ' tests with C condition

End If

' Check the first row text on Excel worksheet
If Worksheets("Sheet1").Range(szTestPat + "1") = "W" Then

' W for Withstanding Test
tos.TestMode = tosMode_W
' References 2nd~5th rows to set voltage/lower/upper/time
tos.Voltage = Val(Worksheets("Sheet1").Range(szTestPat + "2"))
tos.LimitLower = Val(Worksheets("Sheet1").Range(szTestPat + "3"))
tos.LimitUpper = Val(Worksheets("Sheet1").Range(szTestPat + "4"))
tos.ExecTime = Val(Worksheets("Sheet1").Range(szTestPat + "5"))

ElseIf Worksheets("Sheet1").Range(szTestPat + "1") = "I" Then
' I for Insulation Test
tos.TestMode = tosMode_I
' References 2nd~5th rows to set voltage/lower/upper/time
tos.Voltage = Val(Worksheets("Sheet1").Range(szTestPat + "2"))/

1000
tos.LimitLower = Val(Worksheets("Sheet1").Range(szTestPat + "3"))
tos.LimitUpper = Val(Worksheets("Sheet1").Range(szTestPat + "4"))
tos.ExecTime = Val(Worksheets("Sheet1").Range(szTestPat + "5"))

Else
Exit Sub

End If
tos.Start ' starts test

End Sub

Private Sub CommandButtonStop_Click() ' [STOP button handler]
tos.Stop

End Sub

' [event handler for I-test]
Private Sub tos_TestingI(ByVal Status As Integer, ByVal Resistance As
Double) Dim dMomR As Double

dMonR = Resistance
If dMonR > 99900 Then

Label1.Caption = "OVER" ' shows OVER if exceeding 99.9Gohm
Else

Label1.Caption = Str(dMonR) + "Mohm"' shows resistance value on Label1
End If

End Sub

' [event handler for W-test]
Private Sub tos_TestingW(ByVal Status As Integer, ByVal Voltage As Double,
ByVal Current As Double)

Label1.Caption = Format(Current, "0.00mA")
End Sub

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 17/29

Private Sub UserForm_Initialize() ' Form's initialization process
On Error GoTo GPIB_EXP ' declares exp handler (GPIB_EXP)

tos.Connect "GPIB::1" ' connects instrument
Exit Sub

GPIB_EXP:
MsgBox Err.Description ' shows err msg when exp raised
tos.Disconnect
End ' halts the app

End Sub

Private Sub UserForm_Terminate() ' Form's termination process
tos.Disconnect ' disconnects the instrument

End Sub

Figure 4-9 Running example

4-8 SetString And GetString Methods
The SetString method allows you to send a command as is. This is just like ibwrt/ibrd or
PRINT@1;/INPUT@1; statements.

Private Sub CommandButtonMonitor_Click()
tos.SetString "VDATA?"
Label1.Caption = tos.GetString

End Sub

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 18/29

Chapter 5- Visual C++ 6.0 (Dialogue-based App)

5-1 Creating A Project
Choose File | New menu to create a dialogue-based app project. Then select the Project
tab with MFC AppWizard(exe). Enter TOS9000 as the project name. (Figure 5-1)

Figure 5-1 Visual C++ 6.0 "New" dialogue

In the MFC AppWizard - Step1, choose Dialog based. Steps 2 through 4 can be default
(Figure 5-2).

Step1/4

Step2/4

Step3/4

Step4/4

Figure 5-2 MFC AppWizard Step1 to 4

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 19/29

5-2 Adding Component
From the Visual C++ environment, choose Project | Add To Project | Components and
Controls menu. The Components and Controls Gallery dialogue will appear. (Figure
5-3)

Double-click the Registered ActiveX Controls folder to show the ActiveX control list. If an
instrument driver is installed, the list must display its name such as Kikusui xxxx Driver.
Highlight a driver you want and then click the Insert button. As you close the dialogue, the
driver component will be added onto the Control palette (Figure 5-4).

Figure 5-3 Components and Controls Gallery dialogue

Figure 5-4 ActiveX controls for instrument driver

5-3 Locating Controls
As shown in Figure 5-4, select the Tos9000 object from the Control palette and put it onto
the dialogue box.

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 20/29

Note:

Although the guidebook examples TOS9000 instrument driver here, it will be easy to replace with other
instrument drivers.

Delete the default OK and Cancel buttons. Instead add newly 4 buttons and 2 edit controls.
Also add some static controls that describes each control as needed. (Figure 5-5)

Figure 5-5 Designing dialogue box

Modify resource ID and caption for each of buttons with the property dialogue. (Figure 5-6)

Figure 5-6 Control's Property

Set the resource ID for the Tos9000 to IDC_TOS9000. Also add a data member of the
IDC_TOS9000 giving the name m_tos9000. (Figure 5-7)

Figure 5-7 Adding member variables with Class Wizard

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 21/29

5-4 The First Code – Connect
Double-click the Connect button to add the button handler. In the handler, as you type
m_tos9000. then Visual C++6.0's auto-completion feature will help you by showing
available class members. Then just typing co will make you find the Connect method. Also
do not forget add try/catch exception handling code.

void CTOS9000Dlg::OnButtonConnect()
{

CString strVolt;

try{
m_tos9000.Connect("GPIB::1");

}
catch(COleDispatchException* pE){
CHAR szMsg[64];

pE->GetErrorMessage(szMsg, sizeof(szMsg), NULL);
AfxMessageBox(szMsg);
pE->Delete();

}
}

If the connection has failed, an error message shown in (Figure 5-8) will appear.

Figure 5-8 Error Message

5-5 Event Handling
Right-click the TOS9000 icon on the dialogue and select Events. Then the New Windows
Message and Event Handlers dialogue will appear. Highlight TestingW and then click
the Add Handler button (Figure 5-9). Now a procedure on which you can write event-
handling code will be generated.

void CTOS9000Dlg::OnTestingWTos9000(short Status, double Voltage, double Current)
{
 // TODO: Add your control notification handler code here
}

Figure 5-9 Creating Event Handler

To enable the event the AutoMonitorEnabled property must be set to True. Also set
AutoMonitorInterval to an appropriate value [ms]. We recommend 500ms. The example
code shown in the section 5-6 performs a W-test and updates the on-test voltage and
current display on the static text at every 500ms.

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 22/29

5-6 Example Code
In the same manner, add button handlers for Disconnect, Start, and Stop buttons.

void CTOS9000Dlg::OnButtonDisconnect() //[DISCONNECT button handler]
{

m_tos9000.Disconnect(); //disconnects the instr
}

void CTOS9000Dlg::OnButtonStart() //[START button handler]
{

CString strVolt;
CString strTime;

try{
m_edtVolt.GetWindowText(strVolt); //retrieves editbox contents
m_edtTime.GetWindowText(strTime);

//Sets test mode 1=Withstanding, 2=Insulation, 3=LowOhm
m_tos9000.SetTestMode(1);
m_tos9000.SetVoltage(atof(strVolt)); //sets test voltage
m_tos9000.SetLimitLower(0); //sets lower limit
m_tos9000.SetLimitUpper(40); //sets upper limit
m_tos9000.SetExecTime(atof(strTime)); //sets test time
m_tos9000.Start(); //starts test

}
catch(COleDispatchException* pE){ //exception handling

' shows err msg
CHAR szMsg[64];
pE->GetErrorMessage(szMsg, sizeof(szMsg), NULL);
AfxMessageBox(szMsg);
pE->Delete(); //deletes exception object

}
}

void CTOS9000Dlg::OnButtonStop() //[STOP button handler]
{

m_tos9000.Stop(); //stops the test
}

//[event handler for I-test]
void CTOS9000Dlg::OnTestingWTos9000(short Status, double Voltage, double
Current)
{

CString strEvent;
//shows volt & ampere on the static text
strEvent.Format("%3.2fkV\n%3.2fmA", Voltage, Current);
m_lblEvent.SetWindowText(strEvent);

}

5-7 Build And Run

Figure 5-10 Build and run

5-8 Need A Help?
For detail information about methods, properties, and events, access the on-line help for
each of instrument drivers.

C:\Program Files\Common Files\Kikusui Shared\xxxx.hlp

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 23/29

Chapter 6- Visual C++ 6.0 (With Early Binding)

6-1 Creating Project
This chapter describes how to use instrument drivers with MFC Doc/View architecture app
using early binding. The example is SDI app but MDI app is also okay. Instead of putting
controls on a dialogue, the example adds a menu item that handles device controlling.

First Create an MFC AppWizard(exe) project named Tos9000SDI. The app type is SDI
(Figure 6-1).

Step1/6

Step2/6

Step3/6

Step4/6

Step5/6

Step6/6

Figure 6-1 MFC AppWizard Step 1 to 6

6-2 Importing Type Library
Open StdAfx.h and then add the following #import statement after other includes:

#import "C:\Program Files\Common Files\Kikusui Shared\/TOS9000.OCX" named_guids no_namespace

#include <afxcmn.h> ' MFC support for Windows Common Controls

#import "C:\Program Files\Common Files\Kikusui Shared\TOS9000.OCX"
named_guids no_namespace

#endif ' _AFX_NO_AFXCMN_SUPPORT

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 24/29

Note:

If there is a possibility that the instrument driver class name conflicts with others, delete the last
keyword no_namespace. For instance, PIA3200 and PIA4800 drivers both have the same interface
name ISupply, which will conflict each other. To solve this problem, you need avoid using the
no_namespace keyword. In this situation, however, your app code will have to write explicit name-
space designation for all the CLSID, interface names (such as ITos9000), and interface ID (such as
IID_ITos9000).

Open the InitInstance member function on the CTos9000SDIApp class to check if the
AfxOleInit() call is contained. If not add the call on the member function. If you have
checked the Automation option on the AppWizard phase, the call must have been
generated. (Figure 6-1 Step3)

6-3 Adding Menu
Activate the ResourceView tab on the Workspace window and then double-click the
IDR_MAINFRAME menu resource. Add Instrument menu at the right side of the existing
View menu and add an item Connect. The resource ID should be ID_INSTR_CONNECT.
From the ClassWizard, generate the event handler for this menu item by selecting COMMAND
message in the Doc class then clicking the Add Function button. (Figure 6-2)

Figure 6-2 Adding Menu Handler with ClassWizard

6-4 Adding Data Members
Declare a data member m_spTos as ITos9000Ptr type in the Doc class header file. (Bold
letters in the code below)

class CTos9000SDIDoc : public CDocument
{
protected: ' create from serialization only

ITos9000Ptr m_spTos;

CTos9000SDIDoc();
DECLARE_DYNCREATE(CTos9000SDIDoc)

:

Note:

Once you have built the program, you can see the Type Library header (extension .tlh) automatically
generated by the compiler into the Debug folder having ITos9000 interface type which is also
typedefed as a smart-pointer. Similarly, you can see the implementation file (.tli).

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 25/29

6-5 Constructor
The Doc class constructor has to have a generation code for the Tos9000 object instance.
This allows Tos9000 object to be instantiated when the Doc object is created at the same
time. (Bold letters in the code below)

CTos9000EBDoc::CTos9000EBDoc()
{

' TODO: add one-time construction code here
HRESULT hr =::CoCreateInstance(CLSID_Tos9000, NULL,

CLSCTX_INPROC_SERVER, IID_ITos9000, (void**)&m_spTos);
ASSERT(SUCCEEDED(hr));

EnableAutomation();
AfxOleLockApp();

}

6-6 Handler For Connect Menu
Open the menu handler code OnInstrConnect generated by the ClassWizard and then add
the following code. If the declaration of the smart-pointer went well, typing m_spots-> will
invoke the auto-completion feature. Also do not forget the exception handler. (Bold letters
in the code below)

void CTos9000SDIDoc::OnInstrConnect()
{

' TODO: Add your command handler code here
try {

m_spTos->Connect(L"GPIB::1");
}
catch(_com_error e) {

_bstr_t strDesc = e.Description();
AfxMessageBox(strDesc);

}
}

Note:

When you use early bindings in Visual C++, every string passed/returned to/from the object must be
UNICODE. The _bstr_t is a convenient class that converts UNICODE and ANSI strings automatically.

6-7 Build and Run
Now build the executable and run it. Clicking the Instrument | Connect menu will make
your instrument REMOTE state.

Figurfe 6-3 Running SDI app

After connection has succeeded, you can imagine what you should do for remaining. For
detail information about methods, properties, and events, access the on-line help for each of
instrument drivers.

C:\Program Files\Common Files\Kikusui Shared\xxxx.hlp

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 26/29

Chapter 7- Delphi 5.0

Note:

Although this chapter introduces how to use instrument drivers for use with Delphi5, you can use
Delphi3 and Delphi4 in the same manner.

7-1 Importing Control
As you choose Component | Import ActiveX Library menu, you will see a dialogue
shown in the Figure 7-1. If an instrument driver is installed, the list of registered controls
must show the driver name such as "Kikusui xxxx Driver Vxx." Highlight the driver item and
then click the Install button.

Figure 7-1 Installing ActiveX Control

In the Install dialogue, select Into Existing Package tab and then click the OK button.

Figure 7-2 Adding to existing package

Figure 7-3 Recompiling and registering component

Delphi now compiles its own component package and updates the component palette.

Figure 7-4 ActiveX page on Component Palette

The Component Palette will now add the instrument driver controls on the ActiveX page.

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 27/29

7-2 Putting Control onto Form
Put a Tos9000 control (from ActiveX page on the Component Palette) and a BitBtn button
(from Additional page) both onto the form. Then replace the button caption with Connect
as well as renaming the Tos9000 control to simply tos.

Figure 7-5 Putting Controls

7-3 The First Code – Connect
Double-click the Connect button to add event handler code. Typing tos. will pop up
available object members with a help of the Code Completion feature. Highlight the
Connect method then press the ENTER key. After that type ('GPIB::1') as a device name
parameter. 'GPIB::1' means GPIB address 1. When using RS232, type ('ASRL1') instead.

procedure TForm1.BtnConnectClick(Sender: TObject);
begin

tos.Connect('GPIB::1');
end;

7-4 Exception Handling with try/except
In the except block, normally you need an exception object that is concerning to ActiveX/OLE
objects. This is represented with EOleException object. To use this object type, your
program code must add ComObj on the Uses section.

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, OleCtrls, TOS9000Lib_TLB, ComObj;

The following code shows a message box with a yellow exclamation mark and an OK button
when an exception has been raised.

{ CONNECT button handler }
procedure TForm1.BtnConectClick(Sender: TObject);
begin

try
tos.Connect('GPIB::1');

except {exception block}
on e: EOleException do begin

MessageDlg(e.Message, mtWarning, [mbOK], 0); { shows err msg }
end;

end;
end;

Now let’s try running the program. Clicking the Connect button will make the instrument
REMOTE state. Also try turning the power off and then click the Connect button. This case
Delphi debugger causes a runtime error and shows a message box (Figure 7-6).

Figure 7-6 Error Message

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 28/29

If you succeeded until Connect operation, you will understand basic concept. You can write
your own application by referencing the online help.

C:\Program Files\Common Files\Kikusui Shared\xxxx.hlp

7-5 Event Handling
Chose tos on the Object Inspector, and then double-click the cell placed right-hand to the
OnTestingW on the Events tab.

Figure 7-7 Generating event

Now an event procedure on which you can write handler code for W-test will appear.

procedure TForm1.tosTestingW(Sender: TObject; Status: Smallint; Voltage, Current: Double);
begin

end;

To enable the event the AutoMonitorEnabled property must be set to True. Also set
AutoMonitorInterval to an appropriate value [ms]. We recommend 500ms. The example
code shown in the section 7-6 performs a W-test and updates the on-test voltage and
current display on the label control at every 500ms.

7-6 Example Code
As shown in the Figure 7-8, the Form deign of this example has Edit controls for Test Voltage
and Test Time, Start button, and Stop button. Other properties such as TestMode,
LimitLower, or LimitUpper can be set at design time with the Object Inspector.

Figure 7-8 Designing Form

Clicking the Start button will start a test with given test conditions. The program displays
output voltage and leakage current values at 500ms interval during the test running..

 Using ActiveX Instrument Driver Objects

 KIKUSUI ELECTRONICS CORP. Page 29/29

procedure TForm1.BtnConnectClick(Sender: TObject); {CONNECT button handler}
begin

try
tos.Connect('GPIB::1'); { connects instrument }

except
on e: EOleException do begin { exception block }

MessageDlg(e.Message, mtWarning, [mbOK], 0);
{ shows err msg }

end;
end;

end;

procedure TForm1.BtnStartClick(Sender: TObject); { [START button handler]
begin

tos.Voltage:= StrToFloat(EditVoltage.Text); { sets test voltage }
tos.ExecTime:= StrToFloat(EditTime.Text); { sets test time }
tos.Start(); { starts test }

end;

procedure TForm1.BtnStopClick(Sender: TObject); { [STOP button handler] }
begin

tos.Stop(); { stops the test }
end;

{ [Form closing] }
procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin

tos.Disconnect(); { disconnect the instr }
end;

{ [event handler for W-test] }
procedure TForm1.tosTestingW(Sender: TObject; Status: Smallint;

Voltage, Current: Double);
begin

{ Formats monitored volt & ampere and shows them on Label1 }
LabelMonitor1.Caption := Format('%2.2fkV', [Voltage]);
LabelMonitor2.Caption := Format('%2.2fmA', [Current]);

end;

Figure 7-9 Running Example

	Overview
	What Is Instrument Driver
	Tools
	Operational Environment
	GPIB users:
	RS-232C users:

	Setup
	Interface Cards
	GPIB Board
	Connecting Interface Cable
	Installing Instrument Driver
	Tools

	Visual Basic 6.0
	Adding A Component
	Putting Control Onto VB Form
	The First Code - Connect
	Need A Help?
	Property Pages
	Event Handling
	Example Codes
	SetString And GetString Methods

	Excel 97
	Adding User Form and Control
	Putting Control
	The First Code - Connect
	Need A Help?
	Property Pages
	Event Handling
	Example Codes
	SetString And GetString Methods

	Visual C++ 6.0 (Dialogue-based App)
	Creating A Project
	Adding Component
	Locating Controls
	The First Code ? Connect
	Event Handling
	Example Code
	Build And Run
	Need A Help?

	Visual C++ 6.0 (With Early Binding)
	Creating Project
	Importing Type Library
	Adding Menu
	Adding Data Members
	Constructor
	Handler For Connect Menu
	Build and Run

	Delphi 5.0
	Importing Control
	Putting Control onto Form
	The First Code ? Connect
	Exception Handling with try/except
	Event Handling
	Example Code

